Physicists Gain New Understanding of Quantum Cooling Process

Bing He
Provided

Bing He

New research at the U of A is helping physicists better understand optomechanical cooling, a process that is expected to find applications in quantum technology.

Scientists have long understood that applying a properly tuned light field to a macroscopic (visible to the naked eye) object - in this case a mechanical oscillator - results in cooling the object. The process, optomechanical cooling, happens when pressure from photons (particles of light) converts energy stored in the object in the form of thermal phonons (particles of sound) into photons.

Ideally, the process would cool the object to its pure quantum state at which all thermal energy is removed. In reality, the quantum state cannot be achieved due to noise perturbations in the environment.

In their work, U of A researchers defined the new cooling limit, which advances understanding of the process. Their findings were reported in an article titled, "Radiation Pressure Cooling as a Quantum Dynamical Process," published June 9 in the journal Physical Review Letters.

"Like any evolution to a stable state, cooling a mechanical oscillator takes time and, in contrast to what was previously understood, the speed of the process decides what state will be finally achieved,'' said Bing He, first author of the paper and a researcher in the Department of Physics. "Our dynamical picture clarifies how an optomechanical system undergoes the transition from heating to cooling and vice versa, and determines the conditions for achieving the `most quantum result' by the best cooling of the system."

The work will also help guide future experiments, said Min Xiao, a Distinguished Professor in the Department of Physics. "With our new dynamical results, not only the new experimental efforts can be guided, some previously reported experimental and theoretical results and conclusions might also need to be reanalyzed and re-examined," said Xiao.

He and Xiao conducted the research with assistance of former visiting scholars Liu Yang from the Harbin Engineering University and Qing Lin from the National Huaqiao University, China.

Contacts

Bing He, Post Doctoral Fellow
Physics
479-800-4752, binghe@uark.edu

Bob Whitby, feature writer
University Relations
479-575-4737, whitby@uark.edu


Headlines

Tyson Family Adds $1 Million Gift During Dedication of Iconic Research Building

John Tyson, chairman of Tyson Foods, announced a new gift during dedication ceremonies for the new Don Tyson Center for Agricultural Sciences.

U of A Faculty, Staff, Students Present Research at National Association Meeting

University of Arkansas faculty and staff members and graduate students took part recently in the American Association for Adult and Continuing Education annual conference in Memphis.

Exercise Science Doctoral Students to Talk About Their Research Friday

Wesley Haynie and Hyun-Gyu "Sean" Suh, doctoral students in exercise science, will give research presentations from 3 to 4 p.m. Friday, Nov. 17, in HPER 311.

MyDocs, Gizmo, SharePoint and Other Services Affected by Weekend Maintenance

On Saturday morning, MyDocs, Gizmo, SharePoint and other systems relying on the SQL server will be briefly interrupted during routine Windows Server maintenance.

Participants Needed for Study Examining Effect of Diet on Health in Families

The Department of Food Science is recruiting families, defined as at least one parent/guardian, with at least one child between the ages of 6-12 years to participate in a nutrition study.

Newswire Daily