Physicists Create Magnetic 2-D Metal in Artificial Oxide Material

Jak Chakhalian (left) and Yanwei Cao
Photos by University Relations

Jak Chakhalian (left) and Yanwei Cao

FAYETTEVILLE, Ark. – An international research group led by physicists at the University of Arkansas created magnetic two-dimensional metal in an artificial oxide material that could be used to make better transistors.

Physicists hope to harness the power of an electron’s spin to make spin transport electronics — spintronics — multifunctional computational devices that could replace hundreds of conventional devices, said Jak Chakhalian, professor of physics at the U of A who directed the research.

“Our idea was to take a sheet of non-magnetic, two-dimensional electronic gas in an oxide interface and add a third layer that would make the ultrathin metal magnetic with atomic precision,” Chakhalian said.

The discovery furthers the understanding and control of magnetic interactions at the nanoscale in complex oxide interfaces, said Yanwei Cao, a postdoctoral research associate at the U of A who led the study.

The research team published its findings in Physical Review Letters, the journal of the American Physical Society, in a paper titled “Magnetic Interactions at Nanoscale in Trilayer Titanates.”

“What we discovered is that by adding a third magnetic layer to previously known two-dimensional electron gases we can make this two-dimensional sheet of metal magnetic and control the degrees of magnetism by tuning the layer’s thickness,” Cao said. “This has important implications for spintronic research.”

The research group also included U of A postdoctoral research associates Michael Kareev and Srimanta Middey, doctoral student Xiaoran Liu and recent doctoral graduate Derek Meyers, now at Brookhaven National Laboratory.

Additional members of the group were Zhenzhong Yang, Jiandong Guo and Lin Gu of the Chinese Academy of Sciences; Elke Arenholz and Padraic C. Shafer of the Advanced Light Source of the Lawrence Berkeley National Laboratory in California; Debraj Choudhury of the Indian Institute of Technology Kharagpur; and John W. Freeland of the Advanced Photon Source at Argonne National Laboratory near Chicago.

The Gordon and Betty Moore Foundation, U.S. Department of Energy and the Chinese Academy of Sciences all funded the study.

Contacts

Jak Chakhalian, professor
Department of Physics
479-575-4313, jchakhal@uark.edu

Chris Branam, research communications writer/editor
University Relations
479-575-4737, cwbranam@uark.edu

Headlines

Wash Your Hands! In New 'Short Talks,' Gibson Explains Effect of Soap on Respiratory Viruses

In the new episode of Short Talks From the Hill, Kristen Gibson explains how soap destroys respiratory viruses such as coronavirus and offers tips for handling potentially contaminated surfaces.

Essen Selected as Walton College Employee of the Quarter

Eric Essen, instructional designer in Walton College's Graduate School of Business, has been named employee of the fourth quarter by the Sam M. Walton College of Business. 

Glen Dunn Named Global Campus Employee of the Year

Dunn, the manager of technology services, was recognized for his exceptional leadership and hard work during the dual crises of extensive flood damage at Global Campus and COVID-19.

U of A Team Publishes Guide on Navigating College and the Path to Adulthood

A new book, The Science of College: Navigating the First Year and Beyond, written by a team of U of A researchers, professors and higher education professionals, explores what it means to be a college student and young adult in today's society.

SKY Club Presents Session on 'Overcoming Feelings of Loneliness' by Guest Speaker Nina Sanyal

The SKY Club presents 'Overcoming feelings of loneliness' by guest speaker Nina Sanyal, who will talk about overcoming loneliness during an online session at 7 p.m Wednesday, Aug. 5.

News Daily