Research Reveals Insights Into Optical Properties of Plasmonic Nanostructures

From left: Pijush K. Ghosh, Desalegn T. Debu and David A. French.
Photos by Whit Pruitt, University Relations

From left: Pijush K. Ghosh, Desalegn T. Debu and David A. French.

FAYETTEVILLE, Ark. – University of Arkansas researchers have helped define the optical properties of plasmonic nanostructures, work that could lead to improved sensors in security and biomedical devices, and have applications in solar cells. The research team in the Department of Physics recently published its findings in the journal PLOS ONE.

Plasmons are waves of electrons on the surface of a metal. The frequency of these electronic waves can be altered to couple with light by changing the particle size, shape, material and surrounding environment. The plasmons can increase light intensity and focus the light down to nanoscale volumes, which can be useful for a variety of nanoscience applications.

The core of the work is the subject of graduate student Pijush K. Ghosh’s master thesis in physics. Ghosh collaborated with fellow graduate students Desalegn T. Debu and David A. French for the journal article, titled “Calculated thickness dependent plasmonic properties of gold nanobars in the visible to near-infrared light regime.” The students are part of a physics research group led by assistant professor Joseph Herzog.

This work explores the optical properties of rectangular-shaped gold nanoparticles, in particular how they scatter light and the strength of the scattered light near the nanoparticle. The researchers determined how variations in the structures’ geometry affected how they coupled with light, making it easier to work with structures that aren’t perfectly square. The findings could enable plasmonic devices, such as sensors, to be more accurately tuned for a specific application.

“Making nanostructures with perfectly square corners is difficult using common nanofabrication techniques,” Ghosh said. “In our work, we investigated realistic structures with rounded corners. The work determined the difference in resonance wavelength of round-corner and sharp-corner nanobars. We also found how the spectrum precisely shifts as you make thicker nanobars. This reveals insight into another dimension of the structures that allows for more control and tunability of these plasmonic nanostructures.”

Ghosh is pursuing his doctorate in electrical engineering. He is working on a thin-film capacitor project with funding from the U of A’s Center for Power Optimization of Electro-Thermal System, a National Science Foundation-sponsored center.

Contacts

Joseph Herzog, assistant professor
Department of Physics
479-575-4217, jbherzog@uark.edu

Bob Whitby, feature writer
University Relations
479-575-4737, whitby@uark.edu

Headlines

#MyPathToSeniorWalk: Lizbeth Hernandez Finds Her Footing

Hernandez, a Nashville, Arkansas, native and accounting major, is a first-generation student who has found her footing at the U of A after earning her associate's degree at Cossatot Community College. 

School of Art Director Candidates to Present to Campus

Three candidates for the position of director of the School of Art in the Fulbright College of Arts and Sciences - Jason Guynes, Adam Herring and Rachel Debuque - will hold open forums on March 4, 7 and 11, respectively.

AI Outperforms Humans in Standardized Tests of Creative Potential

GPT-4 scored higher than human participants in three tests designed to measure divergent thinking, an indicator of creative potential. 

Fulbright College's Paul D. Adams to Give Prestigious Lecture at Indiana State University

Adams' lecture will highlight findings from his research at the U of A and is titled "Biophysical and Biochemical Approaches to Characterize Novel Molecular Details That Influence Ras-Related Protein Cell Signaling Function." 

The Office of Innovation for Education to Host Annual Education Innovation Rally

At the 2024 Innovation Rally, individuals, teams and organizations will step beyond conventional boundaries and approaches and embrace a collaborative approach to problem-solving.

News Daily