Physicists Build Circuit That Generates Clean, Limitless Power From Graphene

Paul Thibado, professor of physics, with sample energy-harvesting chips under development.
Photo by Russell Cothren

Paul Thibado, professor of physics, with sample energy-harvesting chips under development.

FAYETTEVILLE, Ark. – A team of University of Arkansas physicists has successfully developed a circuit capable of capturing graphene's thermal motion and converting it into an electrical current.

“An energy-harvesting circuit based on graphene could be incorporated into a chip to provide clean, limitless, low-voltage power for small devices or sensors,” said Paul Thibado, professor of physics and lead researcher in the discovery.

The findings, titled "Fluctuation-induced current from freestanding graphene," and published in the journal Physical Review E, are proof of a theory the physicists developed at the U of A three years ago that freestanding graphene — a single layer of carbon atoms — ripples and buckles in a way that holds promise for energy harvesting.

The idea of harvesting energy from graphene is controversial because it refutes physicist Richard Feynman’s well-known assertion that the thermal motion of atoms, known as Brownian motion, cannot do work. Thibado’s team found that at room temperature the thermal motion of graphene does in fact induce an alternating current (AC) in a circuit, an achievement thought to be impossible. 

In the 1950s, physicist Léon Brillouin published a landmark paper refuting the idea that adding a single diode, a one-way electrical gate, to a circuit is the solution to harvesting energy from Brownian motion. Knowing this, Thibado’s group built their circuit with two diodes for converting AC into a direct current (DC). With the diodes in opposition allowing the current to flow both ways, they provide separate paths through the circuit, producing a pulsing DC current that performs work on a load resistor.

Additionally, they discovered that their design increased the amount of power delivered. “We also found that the on-off, switch-like behavior of the diodes actually amplifies the power delivered, rather than reducing it, as previously thought,” said Thibado. “The rate of change in resistance provided by the diodes adds an extra factor to the power.” 

The team used a relatively new field of physics to prove the diodes increased the circuit’s power. “In proving this power enhancement, we drew from the emergent field of stochastic thermodynamics and extended the nearly century-old, celebrated theory of Nyquist,” said coauthor Pradeep Kumar, associate professor of physics and coauthor.  

According to Kumar, the graphene and circuit share a symbiotic relationship. Though the thermal environment is performing work on the load resistor, the graphene and circuit are at the same temperature and heat does not flow between the two.

That’s an important distinction, said Thibado, because a temperature difference between the graphene and circuit, in a circuit producing power, would contradict the second law of thermodynamics. “This means that the second law of thermodynamics is not violated, nor is there any need to argue that ‘Maxwell’s Demon’ is separating hot and cold electrons,” Thibado said.

The team also discovered that the relatively slow motion of graphene induces current in the circuit at low frequencies, which is important from a technological perspective because electronics function more efficiently at lower frequencies. 

“People may think that current flowing in a resistor causes it to heat up, but the Brownian current does not. In fact, if no current was flowing, the resistor would cool down,” Thibado explained. “What we did was reroute the current in the circuit and transform it into something useful.” 

The team’s next objective is to determine if the DC current can be stored in a capacitor for later use, a goal that requires miniaturizing the circuit and patterning it on a silicon wafer, or chip. If millions of these tiny circuits could be built on a 1-millimeter by 1-millimeter chip, they could serve as a low-power battery replacement.

The University of Arkansas holds several patents pending in the U.S. and international markets on the technology and has licensed it for commercial applications through the university’s Technology Ventures division. Researchers Surendra Singh, University Professor of physics; Hugh Churchill, associate professor of physics; and Jeff Dix, assistant professor of engineering, contributed to the work, which was funded by the Chancellor’s Commercialization Fund supported by the Walton Family Charitable Support Foundation.

About the University of Arkansas: The University of Arkansas provides an internationally competitive education for undergraduate and graduate students in more than 200 academic programs. The university contributes new knowledge, economic development, basic and applied research, and creative activity while also providing service to academic and professional disciplines. The Carnegie Foundation classifies the University of Arkansas among fewer than 3 percent of colleges and universities in America that have the highest level of research activity. U.S. News & World Report ranks the University of Arkansas among its top American public research universities. Founded in 1871, the University of Arkansas comprises 10 colleges and schools and maintains a low student-to-faculty ratio that promotes personal attention and close mentoring.

Contacts

Paul Thibado, professor, physics
Fulbright College of Arts and Sciences
479-575-7932, thibado@uark.edu

David Hinton, acting director
Technology Ventures
479-575-5806, djhinton@uark.edu

Bob Whitby, science writer
University Relations
479-575-4737, whitby@uark.edu

Headlines

Carnegie Corporation Selects U of A's Angie Maxwell as 2024 Research Fellow

Political scientist Angie Maxwell selected to be part of the prestigious fellowship class tasked with finding solutions to the growing political polarization issue in the U.S.

NSF Awards $630,000 to Study Teeth of Non-Human Primates

The award will be used to investigate the influence of genes and environment on morphology expressed across distinct tissues of the tooth crown.

Save the Date: 2024 Staff Appreciation Picnic Set for May 15

Mark your calendars for the 2024 Staff Appreciation Picnic with vendors, good food and great company from 11 a.m. to 1:30 p.m. on Wednesday, May 15, at the 1021 Food Hall at Dickson and Garland.

U of A School of Law Student Elected to Leadership of Two National Organizations

Second-year law student Justyce Yuille was selected to serve as vice chair of the American Bar Association's Law Student Division Council and regional secretary for the National Black Law Students Association.

International Experience Enhances Noah Billig's Perspective on Landscape Architecture

Billig has taught, researched and practiced in Istanbul and Vienna and worked as an urban design instructor at Istanbul Technical University and as a landscape designer for Arzu Nuhoglu Peyzaj Tasarim.

News Daily