Researchers Improve Semiconductor Laser on Silicon

Fisher Yu
University of Arkansas / University Relations

Fisher Yu

Electrical engineering researchers have boosted the operating temperature of a promising new semiconductor laser on silicon substrate, moving it one step closer to possible commercial application.

The development of an "optically pumped" laser, made of germanium tin grown on silicon substrates, could lead to faster micro-processing speed of computer chips, sensors, cameras and other electronic devices — at much lower cost.

"In a relatively short time period — roughly two years — we've progressed from 110 Kelvin to a record temperature of 270K," said Shui-Qing "Fisher" Yu, associate professor of electrical engineering. "We are now very close to room-temperature operation and moving quickly toward the application of a material that can significantly increase processing speed with much less power consumption."

Yu leads a multi-institutional team of researchers on developing a laser injected with light, similar to an injection of electrical current. The improved laser covers a broader wavelength range, from 2 to 3 micrometers, and uses a lower lasing threshold, while capable of operating at 270 Kelvin, which is roughly 26 Farenheit. (Kelvin is the standard unit of temperature measurement in the physical sciences.)

"The improvement is based on a simple, yet delicate structure," said by Yiyin Zhou, doctoral candidate in the Microelectronics-Photonics Program, lead author of the paper and a member of Yu's research group. "Thanks to the mature epitaxial growth technique, we could obtain the high-quality alloy with tin content as high as 20 percent, which is the major key to the current achievement."

Germanium tin harnesses efficient emission of light, a feature that silicon, the standard semiconductor for computer chips, cannot do. Yu and other material researchers have focused on growing germanium tin on silicon substrates to build an optoelectronics "superchip" that can transmit data much faster than current chips. In 2016, Yu and colleagues reported the fabrication of their first-generation, optically pumped laser.

The broader wavelength range means potentially more capacity to transmit data, and a lower lasing threshold and higher operation temperature facilitate lower power consumption, which keeps costs down and helps with design simplicity.  

Easily integrated into electronic circuits, such as those found in computer chips and sensors, germanium tin as semiconducting material could lead to the development of low-cost, lightweight, compact and low-power consuming electronic components that use light for information transmission and sensing.

This research is supported by the Air Force Office of Scientific Research.   

The new findings were reported in ACS Photonics

Contacts

Shui-Qing “Fisher” Yu, associate professor
electrical engineering
479-575-7265, syu@uark.edu

Matt McGowan, science and research communications officer
University Relations
479-575-4246, dmcgowa@uark.edu

Headlines

U of A Bands to Hold Three Nights of Concerts

The Symphonic Band, the Wind Symphony, the 4 O'Clock and 5 O'Clock Bands and the Wind Ensemble will perform April 21-23 at the Faulkner Performing Arts Center on the U of A campus.

Honors College to Host 'Best in Show' Dog Celebration

The campus and community are invited to celebrate our furry friends with popsicles, water and dog treats from 3-4 p.m. Thursday, April 25, in the Gearhart Courtyard.

New Parasite Affecting Canadian Partridges Named for Arkansas Poultry Scientist

A long-time colleague in Canada gave a newly found parasite the scientific name Eimeria hargisi in honor of U of A poultry science researcher Billy Hargis.

U of A School of Law Student Selected for Ms. J.D. Leadership Academy Intensive

Tristan Branstetter-Thomas, a second-year law student, was one of 30 students from across the country chosen to participate in the leadership academy at the Northwestern Pritzker School of Law in Chicago.

Needy Honored as Distinguished Alumna of University of Pittsburgh Engineering College

College of Engineering Dean Kim Needy was among seven alumni of the University of Pittsburgh Swanson School of Engineering honored in April as part of the 2024 Class of Distinguished Alumni.

News Daily