New Insight Into Cell Membranes Could Improve Drug Testing and Design

This image illustrates researchers' findings that the membrane proteins can be active, contributing to drug resistance, in cell membranes with one type of lipid composition (top), but inactive in membranes with a different lipid composition (bottom).
Image by Mahmoud Moradi

This image illustrates researchers' findings that the membrane proteins can be active, contributing to drug resistance, in cell membranes with one type of lipid composition (top), but inactive in membranes with a different lipid composition (bottom).

Research at the University of Arkansas on membrane proteins could lead to better development and testing of drugs. Chemistry researchers studied a type of membrane protein that expels drugs from a cell, contributing to drug resistance. They found that the lipid composition of the cell membrane has an effect on the behavior of these proteins, which should be taken into account when testing drugs that target membrane proteins. Their results are available open-access in the journal ACS Central Science.

Drug resistance, including bacterial resistance to antibiotics and cancer cells' resistance to chemotherapy, is a significant challenge for drug developers.

"Almost two-thirds of all drugs target membrane proteins," explained Mahmoud Moradi, assistant professor of chemistry and biochemistry. "This research looks at how membrane proteins interact with the environment. If you ignore the fact that these proteins are dependent on their environment, you could end up with the wrong drugs."

Moradi and colleagues studied a type of membrane protein called multi-drug ABC exporters. These proteins transport substances, such as drugs, from the inside to the outside of cells, and they are responsible for both antibiotic resistance in bacteria and chemotherapy resistance in mammalian cells.

Using specially designed supercomputers supported by the National Science Foundation and the National Institutes of Health, the researchers performed molecular simulations to investigate how the lipid composition of a cell's membrane affects these proteins.

They found that these proteins remained inactive and didn't expel drugs in cell membranes with one type of lipid composition, called phosphocholine, or PC.  However, the same proteins became active in cells with a different lipid composition, called phosphoethanolamine, or PE, allowing them to release drugs and making the cell resistant. Among the cell membranes composed of PE lipids, those containing one particular lipid type, called POPE, proved to be most effective in activating these proteins and thus most susceptible to drug resistance. Taking this information about the lipid environment into account could help researchers more effectively develop and test antibiotics and cancer treatments.

Contacts

Camilla Shumaker, director of science and research communications
University Relations
479-575-7422, camillas@uark.edu

Headlines

Physicist Awarded Vannevar Bush Fellowship by Department of Defense

The award, the department's most prestigious given to a single researcher's group, supports fundamental research with the potential to advance national security.

Faculty Member's Short Film Competes for Oxford Film Festival's Artist Vodka Prize

The Oxford Film Festival has gone virtual and the film Animal by Russell Sharman, assistant professor in the Department of Communication, is being featured and premieres today.

Law Alumni Society Announces Inaugural Award Winners

Alex Guynn will receive the Commitment to Justice Award, Nathan Bogart will be given the Early Career Award, and the Career Champion Award will go to the Legal Team at Walmart Inc.

Sarah Judy and J. Laurence Hare Named U of A's Academic Advisors of the Year

Sarah Judy of Walton College and J. Laurence Hare of Fulbright College have been selected by the University of Arkansas Academic Advising Council as 2019-20 outstanding academic advisors. 

BASIS and webBASIS Access Limited Starting Today

Starting at 5 p.m. today, webBASIS will be unavailable and BASIS access will be limited until 8 a.m. Monday, June 1. This planned outage is required to convert BASIS data to the new Workday system. 

News Daily