Research Reveals Unique Optical Properties in Nanoscale Materials

Metasurface made from gold nanospheres.
Photo Submitted

Metasurface made from gold nanospheres.

Recently published research on plasmonic metasurfaces ­— surfaces with nanoscale features that often exhibit new and unique optical properties — could lead to advances in microscale lenses and other optical components. Miniaturizing these lenses is a step toward improved super-resolution imaging and high-density photonic circuit integration.

The work is a collaboration between Joseph B. Herzog, an assistant professor in the Department of Physics at the J. William Fulbright College of Arts and Sciences, and scientists at the Naval Research Laboratory in Washington, D.C.

The project, led by Jake Fontana at the NRL and published in the journal ACS Photonics, created large area optical metasurfaces with gold nanoparticles. Gold nanoparticles support plasmons, which are oscillating electrons on the gold surface. The vibrating electrons and their collective interactions give rise to the unique optical properties of the metasurface. Dennis Doyle, an undergraduate at the University of Pittsburgh and first author of the paper, fabricated the surfaces with millions of gold nanospheres, precisely controlling subnanometer spacings between each sphere. Accurately controlling gap spacing allowed researchers to show that experimental results agree well with classical (local) electromagnetic models, revealing that the classical model can predict plasmonic and optical properties in subnanometer dimensions down to at least half of a nanometer, which is one-billionth of a meter.

The paper, titled Tunable Subnanometer Gap Plasmonic Metasurfaces, also shows that these metasurfaces exhibit unique optical properties beyond those found in nature. Typically, the real part of the refractive index, an important optical material property, is limited to less than 3 for naturally occurring materials. The research team was able to fabricate metasurfaces with values as high as 5, opening the door to new photonic and optical applications.

Other scientists who contributed to the project include N. Charipar, S. Trammell, R. Nita, J. Naciri, and A. Pique from the NRL; and Christos Argyropoulos, a faculty member at the University of Nebraska-Lincoln. The project was supported through the Office of Naval Research. Doyle was a 2017 summer student under the Naval Research Enterprise Internship Program (NREIP). Herzog and Argyropoulos were 2017 fellows in the Office of Naval Research Summer Faculty Research Program.  

Contacts

Joseph B. Herzog, assistant professor
Department of Physics
479-575-4909, jbherzog@uark.edu

Bob Whitby, feature writer
University Relations
479-575-4737, whitby@uark.edu

Headlines

UA Music Professor's Fellowship in Kenya Brings New Sounds to Faulkner Performing Arts Center

The UA Collegiate Chorale will perform arrangements of East African pieces at 7 p.m. Tuesday, Feb. 26, at the Faulkner Performing Arts Center.

University Symphony Orchestra Premieres New Work With Professor Ronda Mains

The University Symphony Orchestra presents their first concert of the spring season with a program called "Angelic Voices" at 7:30 p.m. Monday, Feb. 25, in the Faulkner Performing Arts Center.

Join the Fun at Tonight's Game Night

Join the U of A Campus Cousins program for Game Night with snacks, party games and lots of fun from 7-9 p.m. today, Feb. 22, in the Holcombe Hall Living Room.

Engine Week Kicks off Monday, Feb. 25

The campus community is invited to celebrate Engine Week with the Engineering Student Council with food, games and professional development opportunities.

Northwest Arkansas Regional Science and Engineering Fair Set for March 4 in Union Ballroom

More than 250 fifth-12th grade students in schools from 15 counties in Northwest Arkansas will compete Monday, March 4, in the Northwest Arkansas Regional Science and Engineering Fair.

Newswire Daily