Researchers Develop New Mathematical Framework to Characterize Shape of Graphene

Salvador Barraza-Lopez, University of Arkansas
Photo by Russell Cothren

Salvador Barraza-Lopez, University of Arkansas

FAYETTEVILLE, Ark. — Scientists studying graphene’s properties are using a new mathematical framework to make extremely accurate characterizations of the two-dimensional material’s shape.

Graphene, discovered in 2004, is a one-atom-thick sheet of graphite.

“The properties of two-dimensional materials depend on shape,” said Salvador Barraza-Lopez, an assistant professor of physics at the University of Arkansas. “And this mathematical framework allows you to make extremely accurate characterizations of shape. This framework is a novel tool to understand shape in materials that behave as atom-thin membranes.”

The mathematical framework being used is known as discrete differential geometry, which is the geometry of two-dimensional interlaced structures called meshes. When the nodes of the structure, or mesh points, correspond with atomic positions, discrete differential geometry provides direct information on the potential chemistry and on the electronic properties of two-dimensional materials, Barraza-Lopez said.

The application of discrete differential geometry to understand two-dimensional materials is an original interdisciplinary development, he said.

An international research group, led by Barraza-Lopez, published its findings on Jan. 8 in the journal ACS Nano, in a paper titled, “Quantitative Chemistry and the Discrete Geometry of Conformal Atom-Thin Crystals.” A second article describing the research, “Graphene’s morphology and electronic properties from discrete differential geometry,” was published March 6 as a rapid communication in the journal Physical Review B.

Graphene was once thought of as existing on a continuum — think of a smooth, continuous “blanket” — but the new mathematical framework allows the consideration of the blanket’s “fibers,” which provides an accurate understanding of the blanket’s properties that complements the continuum perspective.

“Since two-dimensional materials can be easily visualized as meshes, we asked ourselves how these theories would look if you express them directly in terms of the positions of the atoms, bypassing entirely the common continuum approximation,” Barraza-Lopez said. “These two papers provide our latest strides towards that direction.”

The results for the study published in ACS Nano on Jan 8 were obtained through a collaborative effort with Alejandro A. Pacheco Sanjuan at Universidad del Norte, Barranquilla, Colombia; Edmund O. Harriss, a clinical assistant professor of mathematics at the University of Arkansas; Mehrshad Mehboudi, a master’s student in microelectronics-photonics at the University of Arkansas and Humberto Terrones, then at Pennsylvania State University, now at Rensselaer Polytechnic Institute.

Collaborators on the rapid communication published in Physical Review B on March 6 were Pacheco Sanjuan; Hamed Pour Imani, a physics doctoral student at the University of Arkansas; Zhengfei Wang at the University of Utah; and Mihajlo Vanevic at the University of Belgrade, Serbia.

Contacts

Salvador Barraza-Lopez, assistant professor, physics
J. William Fulbright College of Arts and Sciences
479-575-5933, sbarraza@uark.edu

Chris Branam, research communications writer/editor
University Relations
479-575-4737, cwbranam@uark.edu

Headlines

Researchers Develop New Method for Making Inorganic Catalytic Nanoparticles

Imann Mosleh, doctoral student chemical engineering, helped develop a method to synthesize inorganic nanoparticles using inhomogenous, or impure, biomaterials.

U of A Doctoral Student Selected for SREB-State Doctoral Scholars Program

Merlin Kamgue, a doctoral student in the Educational Statistics and Research Methods program, has been accepted into the Southern Regional Education Board-State Doctoral Scholars Program.

Agribusiness Master's Student Successfully Defends Thesis

Grant Wilson, a graduate student in Agricultural Economics and Agribusiness in the Dale Bumpers College of Agricultural, Food and Life Sciences, successfully defended his thesis.

Arkansas Peach Wins First, Second Place in Premier Alabama Festival

Mark Knight wasn't even considering entering a white-fleshed peach in the Chilton County Peach Festival contest in Alabama this year. His daughters talked him into it. On the morning of the contest, Knight had harvested some White County peaches, a variety developed by professors in the University of Arkansas Bumpers College and researchers in the U of A System Division of Agriculture fruit-breeding program. They looked good, and they proved to be blue ribbon peaches.

U of A to Welcome Ninth Cohort of PAPSS Scholars

Twenty-two Panamanian students will begin their academics at Spring International Language Center before starting work toward degrees at the University of Arkansas.

Newswire Daily