Physicists Quantify Temperature Changes in Metal Nanowires

Joseph B. Herzog, University of Arkansas
Photo by University Relations

Joseph B. Herzog, University of Arkansas

FAYETTEVILLE, Ark. — Using the interaction between light and charge fluctuations in metal nanostuctures called plasmons, a University of Arkansas physicist and his collaborators have demonstrated the capability of measuring temperature changes in very small 3-D regions of space.

Plasmons can be thought of as waves of electrons in a metal surface, said Joseph B. Herzog, visiting assistant professor of physics, who co-authored a paper detailing the findings that was published Jan. 1 by the journal Nano Letters, a publication of the American Chemical Society. 

The paper, titled “Thermoplasmonics: Quantifying Plasmonic Heating in Single Nanowires," was co-written by Rice University researchers Mark W. Knight and Douglas Natelson.

In the experiments, Herzog, who joined the U of A faculty last summer, fabricated plasmonic nanostructures with electron beam lithography and precisely focused a laser on to a gold nanowire with a scanning optical setup.

“This work measures the change in electrical resistance of a single gold nanowire while it is illuminated with light,” Herzog said. “The change in resistance is related to the temperature change of the nanowire. Being able to measure temperature changes at small nanoscale volumes can be difficult, and determining what portion of this temperature change is due to plasmons can be even more challenging.

“By varying the polarization of the light incident on the nanostructures, the plasmonic contribution of the optical heating has been determined and confirmed with computational modeling,” he said.

Herzog’s publication is in a rapidly growing, specialized area called thermoplasmonics, a sub-field of plasmonics that studies the effects of heat due to plasmons and has been used in applications ranging from cancer treatment to solar energy harvesting.

Herzog combines his research of plasmons with his expertise in nano-optics, which is the nanoscale study of light. 

“It’s a growing field,” he said. “Nano-optics and plasmonics allow you to focus light into smaller regions that are below the diffraction limit of light. A plasmonic nanostructure is like an optical antenna. The plasmon-light interaction makes plasmonics fascinating.”

Herzog is setting up his research lab at the University of Arkansas, which will focus on nano-optics and plasmonics. In addition to his appointment in physics, Herzog collaborates with the university’s microelectronics-photonics program and the University of Arkansas’ Institute for Nanoscience and Engineering.

 

Contacts

Joseph B. Herzog, visiting assistant professor
physics
479-575-4217, jbherzog@uark.edu

Chris Branam, research communications writer/editor
University Relations
479-575-4737, cwbranam@uark.edu

Headlines

Online Resource Provides Latest Updates on Student Travel Impacted by Coronavirus

A new Coronavirus Updates webpage offers students and parents current information and relevant resources about studying abroad and international travel.

Carroll Wins 2020 Altheimer Moot Court Competition

Law student Alex Carroll successfully represented his client against students Arthur Jefferson and Ashley Wofford Spinazze in the final round of the 2020 Ben J. Altheimer Moot Court Competition.

Department of Biological Sciences Mourns Passing of Professor Emeritus Art Brown

Professor Emeritus Arthur "Art" Virgil Brown, 79, of West Fork, Arkansas passed away peacefully Sunday, Feb. 23, after a short battle with brain cancer.

Counselors-in-residence Receive National Honor for Mental Health Leadership

Two doctoral students who provide mental health services to residential students were awarded Emerging Leader grants by the American College Counseling Association.

Students Advocating for Stronger Sisterhood Sponsors Women's Empowerment Week March 2-6

Students Advocating for Stronger Sisterhood invites all university students to our Women's Empowerment Week Monday through Friday, March 2-6.

Newswire Daily