Physicists Quantify Temperature Changes in Metal Nanowires

Joseph B. Herzog, University of Arkansas
Photo by University Relations

Joseph B. Herzog, University of Arkansas

FAYETTEVILLE, Ark. — Using the interaction between light and charge fluctuations in metal nanostuctures called plasmons, a University of Arkansas physicist and his collaborators have demonstrated the capability of measuring temperature changes in very small 3-D regions of space.

Plasmons can be thought of as waves of electrons in a metal surface, said Joseph B. Herzog, visiting assistant professor of physics, who co-authored a paper detailing the findings that was published Jan. 1 by the journal Nano Letters, a publication of the American Chemical Society. 

The paper, titled “Thermoplasmonics: Quantifying Plasmonic Heating in Single Nanowires," was co-written by Rice University researchers Mark W. Knight and Douglas Natelson.

In the experiments, Herzog, who joined the U of A faculty last summer, fabricated plasmonic nanostructures with electron beam lithography and precisely focused a laser on to a gold nanowire with a scanning optical setup.

“This work measures the change in electrical resistance of a single gold nanowire while it is illuminated with light,” Herzog said. “The change in resistance is related to the temperature change of the nanowire. Being able to measure temperature changes at small nanoscale volumes can be difficult, and determining what portion of this temperature change is due to plasmons can be even more challenging.

“By varying the polarization of the light incident on the nanostructures, the plasmonic contribution of the optical heating has been determined and confirmed with computational modeling,” he said.

Herzog’s publication is in a rapidly growing, specialized area called thermoplasmonics, a sub-field of plasmonics that studies the effects of heat due to plasmons and has been used in applications ranging from cancer treatment to solar energy harvesting.

Herzog combines his research of plasmons with his expertise in nano-optics, which is the nanoscale study of light. 

“It’s a growing field,” he said. “Nano-optics and plasmonics allow you to focus light into smaller regions that are below the diffraction limit of light. A plasmonic nanostructure is like an optical antenna. The plasmon-light interaction makes plasmonics fascinating.”

Herzog is setting up his research lab at the University of Arkansas, which will focus on nano-optics and plasmonics. In addition to his appointment in physics, Herzog collaborates with the university’s microelectronics-photonics program and the University of Arkansas’ Institute for Nanoscience and Engineering.

 

Contacts

Joseph B. Herzog, visiting assistant professor
physics
479-575-4217, jbherzog@uark.edu

Chris Branam, research communications writer/editor
University Relations
479-575-4737, cwbranam@uark.edu

Headlines

UA Music Professor's Fellowship in Kenya Brings New Sounds to Faulkner Performing Arts Center

The UA Collegiate Chorale will perform arrangements of East African pieces at 7 p.m. Tuesday, Feb. 26, at the Faulkner Performing Arts Center.

University Symphony Orchestra Premieres New Work With Professor Ronda Mains

The University Symphony Orchestra presents their first concert of the spring season with a program called "Angelic Voices" at 7:30 p.m. Monday, Feb. 25, in the Faulkner Performing Arts Center.

Join the Fun at Tonight's Game Night

Join the U of A Campus Cousins program for Game Night with snacks, party games and lots of fun from 7-9 p.m. today, Feb. 22, in the Holcombe Hall Living Room.

Engine Week Kicks off Monday, Feb. 25

The campus community is invited to celebrate Engine Week with the Engineering Student Council with food, games and professional development opportunities.

Northwest Arkansas Regional Science and Engineering Fair Set for March 4 in Union Ballroom

More than 250 fifth-12th grade students in schools from 15 counties in Northwest Arkansas will compete Monday, March 4, in the Northwest Arkansas Regional Science and Engineering Fair.

Newswire Daily