University of Arkansas Researchers Identify Transformation in Low-Temperature Water

Feng Wang, University of Arkansas
Photo by Russell Cothren

Feng Wang, University of Arkansas

FAYETTEVILLE, Ark. – Researchers at the University of Arkansas have identified that water, when chilled to a very low temperature, transforms into a new form of liquid.

Through a simulation performed in “supercooled” water, a research team led by chemist Feng “Seymour” Wang, confirmed a “liquid-liquid” phase transition at 207 Kelvins, or 87 degrees below zero on the Fahrenheit scale.

The properties of supercooled water are important for understanding basic processes during cryoprotection, which is the preservation of tissue or cells by liquid nitrogen so they can be thawed without damage, said Wang, an associate professor in the department of chemistry and biochemistry in the J. William Fulbright College of Arts and Sciences.

“On a microsecond time scale, the water did not actually form ice but it transformed into a new form of liquid,” Wang said. “The study provides strong supporting evidence of the liquid-liquid phase transition and predicted a temperature of minimum density if water can be cooled well below its normal freezing temperature. Our study shows water will expand at a very low temperature even without forming ice.” 

The findings were published online July 8 in the journal Proceedings of the National Academy of Sciences. Wang wrote the article, “Liquid–liquid transition in supercooled water suggested by microsecond simulations.” Research associates Yaping Li and Jicun Li assisted with the study.

The liquid–liquid phase transition in supercooled water has been used to explain many anomalous behaviors of water. Direct experimental verification of such a phase transition had not been accomplished, and theoretical studies from different simulations contradicted each other, Wang said.

The University of Arkansas research team investigated the liquid–liquid phase transition using a simulation model called Water potential from Adaptive Force Matching for Ice and Liquid (WAIL). While normal water is a high-density liquid, the low-density liquid emerged at lower temperatures, according to the simulation.

The research was supported by a National Science Foundation Faculty Early Career Development Award and by a startup grant from the U of A. The University of Arkansas High Performance Computing Center provided the main computational resource for the study.

Contacts

Feng Wang, associate professor
chemistry and biochemistry
469-575-5625, fengwang@uark.edu

Chris Branam, research communications writer/editor
University Relations
479-575-4737, cwbranam@uark.edu


Headlines

Ahrendsen Wins Bumpers College's Outstanding International Education Award

Bruce Ahrendsen, a professor of agricultural economics and agribusiness, has been named winner of the Outstanding International Education Award for 2017 in Bumpers College.

English Faculty Edit and Contribute to New Book Analyzing Television and the U.S. South

Small-Screen Souths: Region, Identity, and the Cultural Politics of Television will be released in November by the Louisiana State University Press.

True Lit Festival Kicks Off with Poet Kaveh Akbar

Award-winning Iranian American poet Kaveh Akbar kicks off this year's True Lit Fayetteville Literary Festival at 2 p.m. this Sunday, Oct. 22, in the Fayetteville Public Library.

Researcher Studies Pollinator Plots for Warm Season Grass Lawns

Michelle Wisdom, a graduate student in horticulture, is researching ways to incorporate bulbs and other flowers into lawns and other turfgrass to provide habitat for pollinating insects.

Semifinalists for Exercise Science Regional Research Awards to Give Presentations Today

Ricky Perry, Samantha Mohler and Sarah Ramey will give presentations on their research from 3 to 4 p.m. Friday, Oct. 20, in Room 311 of the HPER Building.

Newswire Daily