Researchers Provide Answers to Questions About Relaxors

FAYETTEVILLE, Ark. – University of Arkansas physicists and their colleagues have determined important information about the nanoscale properties of materials called relaxors, which can be used in electronic devices to change temperature or shape. The discoveries may help maximize efficient use of relaxors to create better medical ultrasound, sensors and heart implants.

Scientists Sergey Prosandeev and Laurent Bellaiche, from the University of Arkansas?  with A. Akbarzadeh of Rice University, Eric Walter of the College of William and Mary and A. Al-Barakaty of Umm Al-Qura University in Makkah, Saudi Arabia report their findings in the current issue of Physical Review Letters.

You can find the materials known as relaxors in many everyday appliances, in life-saving heart implants and in most sensors. But despite their wide use, “we still didn’t have a realistic theory of how these things work,” Prosandeev said.

Transitions in the polarity of relaxors seem disorderly, which would make them difficult to control. However, Prosandeev and his colleagues wondered if order might lie beneath the disorder.

The researchers performed calculations on a certain type of relaxor, barium zirconium titanium oxide, Ba(Zr,Ti)O3. They found that the relaxor stopped being polarized at higher temperatures. Meanwhile, the material developed nanoregions with the same polarities at lower temperatures. They also showed that this happens because of competition between opposite effects, such as differences in the way titanium ions and zirconium ions want to move or stay in non-polar positions. Another struggle between opposites involves ferroelectric interactions at short distances versus antiferroelectric interactions at larger distances between the titanium atoms. At low temperatures, the changes in position of titanium atoms are parallel to each other within small polar nanoregions. At higher temperatures, the changes in position of titanium atoms are mostly random, which make the polarity disappear.

The researchers also resolved a long-standing controversy about the role of these random polar nanoregions in relaxors. Using their model, they could switch off and on the random fields and examine their effect on the properties of the material. They found that, contrary to what scientists thought previously, turning off random fields did not affect the relaxor’s behavior at different temperatures.

Understanding these properties will allow researchers better control over the materials’ properties, which will in turn make for better materials for everyday life.

Contacts

Sergey Prosandeev, research professor, physics
J. William Fulbright College of Arts and Sciences
479-575-6668, sporssan@uark.edu

Melissa Blouin, director of science and research communication
University Relations
479-575-3033, blouin@uark.edu

Headlines

Peter Ungar Chosen as Member of the National Academy of Sciences

A distinguished professor of anthropology and director of environmental dynamics, Ungar is the first U of A faculty member to be elected to the prestigious Academy.

Ag Technology Students Visit Greenway Equipment, Learn About Advances in Machinery

Members of the U of A's Agricultural Systems and Technology Club recently spent a day at the Greenway Technology Farm in Newport to learn about advances featured in John Deere tractors and machinery.

College of Education and Health Professions WE CARE Everywhere Campaign Kicks Off This Summer

Retractable scroll banners with the phrase "WE CARE Everywhere" are small enough to fit any suitcase and just waiting for your chance to shine in social media posts throughout the summer.

Staff Senators for 2024-25 Elected

Twelve newly elected staff members will begin serving the U of A staff community for three-year terms beginning July 1 on the university's Staff Senate.

Matlock Briefs Congressional Staff Regarding Crop Sustainability Research

Professor Marty Matlock briefed U.S. House of Representative and Senate staff members on research conducted by the U of A regarding the effects of management practices on crop sustainability.

News Daily