Physicists Gain New Understanding of Quantum Cooling Process

Bing He
Provided

Bing He

New research at the U of A is helping physicists better understand optomechanical cooling, a process that is expected to find applications in quantum technology.

Scientists have long understood that applying a properly tuned light field to a macroscopic (visible to the naked eye) object - in this case a mechanical oscillator - results in cooling the object. The process, optomechanical cooling, happens when pressure from photons (particles of light) converts energy stored in the object in the form of thermal phonons (particles of sound) into photons.

Ideally, the process would cool the object to its pure quantum state at which all thermal energy is removed. In reality, the quantum state cannot be achieved due to noise perturbations in the environment.

In their work, U of A researchers defined the new cooling limit, which advances understanding of the process. Their findings were reported in an article titled, "Radiation Pressure Cooling as a Quantum Dynamical Process," published June 9 in the journal Physical Review Letters.

"Like any evolution to a stable state, cooling a mechanical oscillator takes time and, in contrast to what was previously understood, the speed of the process decides what state will be finally achieved,'' said Bing He, first author of the paper and a researcher in the Department of Physics. "Our dynamical picture clarifies how an optomechanical system undergoes the transition from heating to cooling and vice versa, and determines the conditions for achieving the `most quantum result' by the best cooling of the system."

The work will also help guide future experiments, said Min Xiao, a Distinguished Professor in the Department of Physics. "With our new dynamical results, not only the new experimental efforts can be guided, some previously reported experimental and theoretical results and conclusions might also need to be reanalyzed and re-examined," said Xiao.

He and Xiao conducted the research with assistance of former visiting scholars Liu Yang from the Harbin Engineering University and Qing Lin from the National Huaqiao University, China.

Contacts

Bing He, Post Doctoral Fellow
Physics
479-800-4752, binghe@uark.edu

Bob Whitby, feature writer
University Relations
479-575-4737, whitby@uark.edu

Headlines

Food Scientists Show Rice Malt Has Potential to Play a Bigger Role in Beer

With Arkansas growing about half of the rice in the United States, and shortages of traditional raw materials such as barley, evaluating rice cultivars for use in malted brewing was one goal of U of A researchers.

Electrical Engineering and Computer Science Senior Design Projects Reviewed by Alumni

Students condensed their design work into senior design projects and presented them for department alumni and other industry professionals, gaining insights from peers and faculty members.

An Evening With NWA Soldier Songs and Voices: The Healing Power of Music

Members of the Northwest Arkansas chapter of Soldier Songs and Voices will share their experiences and perform music in the Pryor Center atrium at 6 p.m. on Friday, April 5.

University Not Pursuing Full External Management of Custodial and Grounds Services

Following an evaluation process that provided the U of A with the opportunity to learn more about its current operations compared to the market, the university will maintain its current workforce.

NAHJ UARK: Free Churros and Sodas During J-Days Celebration

 The U of A chapter of the National Association of Hispanic Journalists will offer churros and sodas on the north patio of Kimpel Hall from noon to 2 p.m. Thursday. Stop by and support your local journalist.

News Daily