Physicists Discover Large Magnitude Elasto-Optic Effect in Ferroelectric Materials

Yurong Yang, University of Arkansas
Photo by Russell Cothren

Yurong Yang, University of Arkansas

FAYETTEVILLE, Ark. ­– An international group of physicists discovered a phenomenon of large magnitude in an unexpected class of materials that can lead to a variety of devices used in optical systems.

That phenomenon – the elasto-optic effect – characterizes the formation of a periodic variance of light refraction when an acoustic wave propagates in optical materials, said Yurong Yang, a research assistant professor at the University of Arkansas who led the research.

“We found a significantly large elasto-optic effect in thin films made of materials called ferroelectrics,” Yang said, “which are usually considered for their changes in mechanical energy into electrical energy and vice versa, as well in multiferroelectric thin films, which are commonly investigated because of the possible control of their magnetic response by electric input, as well as of their electric response by magnetic input.”

The research group published its findings in a paper in Physical Review Letters, the journal of the American Physical Society. A second paper describing the research was published in Nature Communications, an online journal published by the journal Nature.

“Those discoveries of a large elasto-optic effect in ferroelectrics and multiferroelectrics therefore broaden the potential of these materials since they can now be put in use to also control their optical responses by elastic property,” said Laurent Bellaiche, Distinguished Professor of physics at the U of A, “which suggests exciting device opportunities arising from this overlooked coupling in these classes of materials.”

Yang and Bellaiche, who holds the Twenty-First Century Endowed Professorship in Nanotechnology and Science Education, both conduct research in the Institute for Nanoscience and Engineering and physics department at the U of A. The researchers performed calculations on supercomputers at the Arkansas High Performance Computing Center and a U.S. Department of Defense supercomputing resource.

The results published in Physical Review Letters were obtained through a collaborative effort with Zhigang Gui, a U of A physics graduate who is now a postdoctoral research associate at the University of Delaware; Lan Chen and X.K. Meng at Nanjing University in China, and Daniel Sando and Manuel Bibes at University of Paris-Sud in France.

The results published in Nature Communications were obtained through a collaborative effort with Daniel Sando and Manuel Bibes too and Cecile Carretero, Vincent Garcia, Stephane Fusil and Agnes Barthelemy at the University of Paris-Sud; Eric Bousquet and Philippe Ghosez at the University of Liege in Belgium; and Daniel Dolfi of Thales Research and Technology in France. 

Contacts

Yurong Yang, research assistant professor
Department of Physics
479-575-2019, yyrwater@uark.edu

Laurent Bellaiche, Distinguished Professor
Department of Physics
479-575-6425, laurent@uark.edu

Chris Branam, research communications writer/editor
University Relations
479-575-4737, cwbranam@uark.edu

News Daily