Physicists Quantify Temperature Changes in Metal Nanowires

Joseph B. Herzog, University of Arkansas
Photo by University Relations

Joseph B. Herzog, University of Arkansas

FAYETTEVILLE, Ark. — Using the interaction between light and charge fluctuations in metal nanostuctures called plasmons, a University of Arkansas physicist and his collaborators have demonstrated the capability of measuring temperature changes in very small 3-D regions of space.

Plasmons can be thought of as waves of electrons in a metal surface, said Joseph B. Herzog, visiting assistant professor of physics, who co-authored a paper detailing the findings that was published Jan. 1 by the journal Nano Letters, a publication of the American Chemical Society. 

The paper, titled “Thermoplasmonics: Quantifying Plasmonic Heating in Single Nanowires," was co-written by Rice University researchers Mark W. Knight and Douglas Natelson.

In the experiments, Herzog, who joined the U of A faculty last summer, fabricated plasmonic nanostructures with electron beam lithography and precisely focused a laser on to a gold nanowire with a scanning optical setup.

“This work measures the change in electrical resistance of a single gold nanowire while it is illuminated with light,” Herzog said. “The change in resistance is related to the temperature change of the nanowire. Being able to measure temperature changes at small nanoscale volumes can be difficult, and determining what portion of this temperature change is due to plasmons can be even more challenging.

“By varying the polarization of the light incident on the nanostructures, the plasmonic contribution of the optical heating has been determined and confirmed with computational modeling,” he said.

Herzog’s publication is in a rapidly growing, specialized area called thermoplasmonics, a sub-field of plasmonics that studies the effects of heat due to plasmons and has been used in applications ranging from cancer treatment to solar energy harvesting.

Herzog combines his research of plasmons with his expertise in nano-optics, which is the nanoscale study of light. 

“It’s a growing field,” he said. “Nano-optics and plasmonics allow you to focus light into smaller regions that are below the diffraction limit of light. A plasmonic nanostructure is like an optical antenna. The plasmon-light interaction makes plasmonics fascinating.”

Herzog is setting up his research lab at the University of Arkansas, which will focus on nano-optics and plasmonics. In addition to his appointment in physics, Herzog collaborates with the university’s microelectronics-photonics program and the University of Arkansas’ Institute for Nanoscience and Engineering.

 

Contacts

Joseph B. Herzog, visiting assistant professor
physics
479-575-4217, jbherzog@uark.edu

Chris Branam, research communications writer/editor
University Relations
479-575-4737, cwbranam@uark.edu


Editor-selected comments will be published below. No abusive material, personal attacks, profanity, spam or material of a similar nature will be considered for publication.

comments powered by Disqus

Headlines

Students Awarded Summer Internships With the Office of Naval Research

U of A graduate students David French and Stephen Bauman, undergraduate Madison Whitby, and Zachary Brawley, an undergraduate at UCA, have been selected for internships.

Law Professor and Four Students Acknowledged by United Nations

Professor Uché Ewelukwa Ofodile and students Luke Brasuell, Elizabeth Kanopsic, Liliana Vasquez and Saad A. Alotaibi participated in an initiative related to international investment agreements.

Conceal-Carry Legislation Signed

The U of A will work with the UA System as the system establishes policies, guidelines and practices that align with the law that takes effect in September.

Human Nutrition Faculty Offer Advice on Understanding Food Labels

March is National Nutrition Month, and U of A human nutrition faculty explain changes and information included on revised food labels.

J.B. Hunt Transport Services Inc., U of A Create Supply Chain Innovation Center

A $2.75 million grant to the U of A will establish an interdisciplinary center for excellence in supply chain management technology research.

Newswire Daily