Physicists Take an Atomic-Level Peek at Unexpected Behavior in Multilayered Structures

Cross-sectional image of the multilayer structure on nanoscale
Photo Submitted

Cross-sectional image of the multilayer structure on nanoscale

FAYETTEVILLE, Ark. – A new class of materials developed at the University of Arkansas may influence the next generation of nano-devices, in which integrated circuits are composed of many layers of dissimilar materials, such as ferromagnetic and superconducting oxides.

The researchers used innovative cross-sectional scanning tunneling microscopy and spectroscopy at the U.S. Department of Energy’s Argonne Center for Nanoscale Materials to develop the first direct view of the physical and chemical behavior of electrons and atoms at boundary regions within the dissimilar materials.

“The fundamental issue here is that conventional modern day electronics based on silicon is very problematic to operate on a nanometer scale,” said Jak Chakhalian, professor of physics in the J. William Fulbright College of Arts and Sciences at the University of Arkansas. “Integrated circuits have many, many layers of functional material. As layers get thinner, the materials start behaving strangely and often unreliably. Now the question of the size of the interface, where two materials ‘talk’ to each other or influence each other, becomes critical.”

An article detailing the finding, “Visualizing short-range charter transfer at the interfaces between ferromagnetic and superconducting oxides” was published Aug. 13 in the online journal Nature Communications.

Te Yu Chien, a former postdoctoral research associate at the university, developed a technique at the Advanced Photon Source at Argonne to help Chakhalian’s research group with an easy way of looking directly at the interfaces between two dissimilar oxides.

“That was the breakthrough,” Chakhalian said. “He found the ‘knife’ that would cut through the multilayered ‘sandwich.’ Previously, it was extremely difficult, if not impossible, to look inside the layered complex oxide nanomaterial that we had developed here in our lab because they fractured when they were cut.

Chien’s technique provided the researchers with crucial information: Not only do the atomic layers talk to each other, but they also deeply influence each other on a one- to two-nanometer scale.

“We learned that in our materials, the layers strongly influence each other,” Chakhalian said. “For the first time, we showed how electrons and ions interact on the atomic scale in those complex multilayered structures, and it was not what a lot of people expected. This is fantastic. So now we can have beautiful control of these materials on the atomic scale obtained right at the interface, which defines the properties of those materials.”

Chakhalian holds the Charles E. and Clydene Scharlau Endowed Professorship and directs the Laboratory for Artificial Quantum Materials at the University of Arkansas.

The results were obtained by a collaborative effort with John W. Freeland of the Advanced Photon Source and Nathan P. Guisinger of the Center for Nanoscale Materials, both at Argonne National Lab outside Chicago; and Lena F. Kourkoutis and David A. Muller at the Kavli Institute at Cornell for Nanoscale Science in Ithaca, N.Y.


Jak Chakhalian, professor, physics
J. William Fulbright College of Arts and Sciences

Chris Branam, research communications writer/editor
University Relations

Editor-selected comments will be published below. No abusive material, personal attacks, profanity, spam or material of a similar nature will be considered for publication.

comments powered by Disqus


18th Delta Scholarship Golf Classic Helps Nine CSES Students Earn Scholarships

The Department of Crop, Soil and Environmental Sciences raised more than $22,800 for scholarships at its 18th Annual Delta Scholarship Golf Classic this summer.

2017 WebFirst Conference a Success

This year's conference was opened to attendees inside and outside the campus including the Fayetteville Chamber of Commerce and surrounding colleges and universities.

Perceived Composer, Author Intent Influences Experience of Music, Poetry

Research shows empathy for a perceived artist affects enjoyment and that listeners want their music happy but their poetry sad.

Healthy Adults Needed for Nutrition Study

Men and women ages 21-45 are needed for a nutrition study examining the effects of sorghum bran polyphenols on fecal fermentation.

Students Dubbed Razorback Classics Excel In and Out of Classroom

Jake Smith and Madeline Wagnon, who were named Razorback Classics this year, stay busy with summer work.

Newswire Daily